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Abstract—DCell [3] has been proposed as a server centric

network structure for data centers. DCell can support millions of
servers with high network capacity and provide good fault tder-
ance by only using commodity mini-switches. However, the &ffic
in DCell is imbalanced in that links at different layers carry very
different number of flows. In this paper, we present a generakzed
DCell framework so that structures with different connecting rules
can be constructed. We show that these structures still presve the
desirable properties of the original DCell structure. Furthermore,
we show that the new structures are more symmetric and provid
much better load-balancing when using shortest-path routig. We
demonstrate the load-balancing property of the new structues by
extensive simulations.

|I. INTRODUCTION

One problem that remains in DCell is that the load is not
evenly balanced among the links in all-to-all communiaatio
This is true for DCellRouting algorithm, a hierarchical timg
algorithm by DCell proposed in [3], as well as shortest path
routing. This could be an obstacle to the use of the DCell
topology.

In this paper, we address the traffic imbalance by showing
that DCell is but one member of a family of graphs satisfying
all of the good properties listed above, and there are sirest
within the family that provide much better load-balancing
property than the original DCell structure.

After introducing this family of generalized DCell graphs,
we explore the graph properties common to all of them as well

Data centers are becoming increasingly important and col some differences between individual members of the yamil
plex. For instance, data centers are critical to the operatiwe provide better bounds than [3] for the number of servers
of companies such as Microsoft, Yahoo!, and Google, whigthd the diameter of the DCell structures. In particular, ha@s
already run data centers with several hundreds of thousaind&iumerically that the new DCell members provide much smaller
servers. Furthermore, data center growth exceeds evenedoogiameter than the original DCell structure and we also explo

Law [9]. It is clear that the traditional tree structure eoydd

the symmetries of the graphs.

for connecting servers in data centers will no longer be suf-we show simulation results on the path length distribution
ficient for future cloud computing and distributed compgtinand flow distribution for both the DCellRouting and shortest
applications. There is, therefore, an immediate need t@uespath routing for several realistic parameter values. Thetmo
new network topologies that can meet these rapid expansigaiportant finding here is that other members of the genedliz

requirements.

DCell graph family have significantly better load-balamrin

Current network topologies that have been studied for largeoperties than the original DCell graph.

data centers include fat-tree [10], BCube [2], and FiCorn [5 The rest of the paper is organized as follows. In Sec. II, we
These three address different issues: For large data sentgftroduce the generalized DCell design. In Sec. Ill, we enés
fat-tree requires the use of expensive high-end switches dgr results on the graph properties of generalized DCalls. |
overcome bottlenecks, and is therefore more useful forlsmalSec. IV, we prove results on path length and flow distribution
data centers. BCube is meant for container-based datarce@fgen using DCellRouting. In Sec. V, we present simulation
networks, which are of the order of only a few thousand serveresults for path length and flow distribution using shorfesth
FiConn is designed to utilize currently unused backup ports routing and DCellRouting. In Sec. VI, we conclude the paper
already existing data center networks. and outline our work-in-progress to design a load-balanced
Guo et al. [3] have recently proposed a novel netwomguting algorithm.
structure called DCell, which addresses the needs of a mega
data center. Its desirable properties include

« doubly exponential scaling

« high network capacity

« large bisection width

« small diameter

« fault-tolerance

« requires only commodity network components

« supports an efficient and scalable routing algorithm

II. CONSTRUCTING GENERALIZED DCELL
A. Structure of Generalized DCell

The general construction principle of the generalized DCel
is the same as that of the original DCell [3]. A DGetlonsists
of n servers connected to a common switch—as an abstract
graph, we model this a&’,,, the complete graph on vertices,
since switches can be regarded as transparent networkedevic
From here, we proceed recursively. Denotethythe number



of servers in a DCell. Then, to construct a DCgll we take «. The connection rule for the original DCell is
tx—1 + 1 DCell,_1's and connect them in such a way that
ay, [aab] A {

(a) there is exactly one edge between every pair of distinct [b+1,a] !f asb
DCell,_,’s, and [b,a —1] if a>b.
(b) we have added exactly one edge to each vertex. 6. A mathematically simple connection rule is
Requirement (a) means that, if we contract each QCell
to a single point, then the DCgllis a complete graph on
tr—1+ 1 vertices. This imitation of the complete graph is what ~. Fortr_; even, we can leavk unchanged by the switch,
we believe gives the DCell structure many of its desirable  except for a change inside the DGell
properties. Requirement (b) is the reason why we must have
exactlyty_; +1 DCell,_1's in a DCell. It ensures that every
server has the same number of links and is the reason why if bis odd,
DCell scales doubly exponentially in the number of servers. [a—(b+1)(modty_q1 +1),b+ 1]
This is precisely the point of divergence from the original if bis even.
DCell proposal. There, one specific way of meeting require- 4)
ments (a) and (b) was proposed, which we name the “
connection rule” later on. But there are many other possésl

(2)

Br : [a,b] < [a+b+1(modtr_q + 1),t,_1—1-b]. (3)

[a+b(modty_1 +1),b— 1]

L : [a,b] <

6. Fortr_, even:

Before we can make this idea more precise, we need to discuss [a+b+1(modtr i +1),b+ L]
how we label the vertices. if b< Lt
Each server is labeled by a vector|id;, ax_1, ..., ap]. Here o1, : [a,b] < R _—

aj, specifies which DCell_, the server is inaj,_, specifies la—b+ =5+ —1(modi, 1 +1),0— =]

which DCell,_, inside that DCell_; the server is in; and so otherwise.

on. So0 < ag < n, and for: > 1, we have0 < a; < t;_1 + 1. (5)

We can convert a vector id to a scalaid (unique identifier)  In the rest of this paper, when the specific connection rule

as follows: used is not important, we will speak of just DCells. If we need

to make reference to a specific connection rule, we will speak

u=ag+aito + agty + -+ + aklp—1. (1) e.g. ofa-DCells, meaning DCells WittR = (a1, ..., ax). In

Note that we have) < u < #, — 1. Most often, we will this context, we should clarify why the requirement that,
label servers just bya,b] wherea ~ a; is the number of be even is not a practical problem for theandé connection

the DCell,_,, andb is theuid corresponding tday_1, ..., ao). rules. It turns out that; is even fork > 1. Thus, for evem,

Using these notions, we can define mathematically what?£e is no problem, while for odd, only a different rule for
connection rule is. Namely, it is a perfect matching of the thel-level links is needed. Since almost all real-world switche

vertices have an even number of ports, we will restrict ourselves amev
n whenever convenient.
{O, ---7tL71} X {O, ...,tL,1 — 1}

that must satisfy the following two properties: Ill. GRAPH PROPERTIES

1) p2 must be the identity, so that the graph is undirected, " this section, we give expressions and bounds for the
(This is also implicit in the term “perfect matching”.) number of servers and the diameter. We also investigate the

2) For alla # ¢, there exist andd such thatp, ([a, b]) = symmetries of the different connection rules. Due to theepag
[, d]. This e'nsures that there is Ialevel link bétween limitation, we omit the proofs of the theorems in Sec. IIl and

each pair of distinct DCell_,’s. Sec. IV, which can be found in [6].
This encapsulates precisely the requirements (a) and @yeab A. Number of Servers

We summarize the construction in the following definition. No closed-form expression for the exact number of servers
Definition 1: A generalized DCell with parameters > 2, 4 in a DCell, is known. However, it is clear from the DCell
k>0,andR = (p1, ..., px) is constructed as follows: construction that,, satisfies the following recurrence relation:
« A DCelly is a complete graph on vertices.
« From here we proceed recursively until we have con- ter1 = t(tk +1) (6)
structed a DCell: A DCell;, consists oft;,_1 + 1 to = n.

DCell,_,’s, wheret,_, is the numb_er of vertices in & This permitst;, to be easily and quickly computed for small
DCell;,_;. Edges are added according to the connecn%dk Refer to Table | for values of;

rule pr. Following a hint by D. E. Knuth in [8], we use the methods

B. Connection Rules of [1] to solve Equation (6), leading to the following theore

. . . . Theorem 1:We have
In this section, we give four examples of connection rules.

Forn =2, k = 2, the graphs are shown in Fig. 1. iy = LchJ, @)
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(@) a-DCell (b) -DCell (c) v-DCell (d) 5-DCell

@

Fig. 1: Generalized DCells with different connection rulesn = 2, k = 2. DCell; groupings are shown in different colors.
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where the constantis well approximated by the first few terms |
of the infinite product

1\ 1 v
C = n — —_—s . 8
( +2)g<1+4(ti+%)2> ®) (2]

TABLE |: Comparison of the diameters of different connentio

176,820 | 15 | 13 | 12 | 12
[ 3263,442] 27 | 17 | 15 16 |

n
2
7
2
7
2

B. Diameter

. . rules.
It is desirable for a data center network to have as smald
a diameter as possible. For if the diameter is large, then
communication between some pairs of servers will necdgsamt most 17 in the new structures. Low diameter leads to higher

be slow, regardless of the routing algorithm used. capacity and also leads to better load-balancing in our.case
1) An Upper Boundin [3], it is shown that the diameter of

a-DCells satisfies C. Symmetry

D < 2kt _q, (9) Symmetry is of importance to data center networks primarily
because it facilitates the initial wiring.
In fact, the proof carries over easily to all generalized I&Ce 1) o-DCell: It turns out that, at least fon > 3, every
since it uses only the DCellRouting which is independent gfaph automorphism of a generalized DCell respects itdddve
the connection rule. structure; that is, a DCellwill be mapped to another DCgll
2) A Lower Bound:A well-known (e.g. [4, p.238]) lower for all L, and all link levels are preserved. Depending on
bound on the diameter of a grapghi with N vertices and the connection rule, however, there can be much stronger

maximum degree\ is requirements on graph automorphisms. &edCell, it appears
log N that there is only one nontrivial symmetry.
= Tog A (10) Theorem 3:For £ > 2 and3 < n < 6, the automorphism

roup of ana-DCell, is isomorphic toCs, the Cycle group of
Using Theorem 1, this inequality leads to the following theogrdefz. “ » P 2 yele group

rem. . , 2) Other connection rulestt is straightforward to prove the
Theorem 2:The diameterD is bounded below by following theorem.
S ok logc Theorem 4:Suppose thé-level connection rule of a DCell
D=2 log(n+k—1)" (11) s of the form:
Sincec is only slightly larger tham + 1, Theorem 2 can be pr :la, b & [a+b+1(modip—y +1),9(b)], (13)
used to show that whereg is any permutation o0, ..., t,_; — 1}. Then the map
D > 2kt (12)

7: [a,b] — [a+ 1(modte_1 + 1), ] (14)
whenk < n%+1. Sincen > 2, this includes the realistic Cases_ - oh automorphism. generates a cvelic subaroun of the
k = 3 and k = 4. Together with inequality (9), this narrows grap P -9 y group

the diameter down to within a factor of 4. autorgr(;ropfhlivrg ﬁ;(\)/lép of orde—; + 1.
3) Dependence on Connection Rul@ble | compares the '

diameter for different connection rules for some small galu  7([a,b]) = [a + 1 (mod t;—1 + 1), ] (15)
of n and k. The diameters of structures constructed by the o [(a+1)+b+1(modtr_1 +1),g(b)]  (16)
new connection rules are significantly smaller than thathef t —[(a+b+1)+1(modix 1 + 1), g(b)] (17)

original DCell connection rule. For example, far= 2 and
k = 4, the diameter of the original DCell is 27, whereas it is =7(la+b+1(modtr_1 +1),9(b)]). (18)



As for the second assertion, clearlys of ordert;_, + 1, since | Z | l; I ZC;: | 83P40‘8 | 22’(6) | z'zz | 32‘; |
for no smaller number do we haver +c¢ = a (modt;_1 + 1). T T o1 516 (487 T 4271 [ 468 | 467
| 6| 2| 573 | 548 | 530 | 526 | 5.28
Note thatg3, ~, and ¢ are all of this form. Hence, these 8 | 2] 604 | 582 | 566 | 559 | 5.64
connection rules lead to significantly more symmetric gsaph 2| 3] 818 | 695 | 658 | 644 | 649
than thea rule. This group of symmetries consists of exactly 413 1129] 996 899 | 868 | 881
the rotational symmetries that are apparent in Fig. 1. (@) Mean
IV. ROUTING [ [k [ DCR | SPa | SPS | SPq [ SPJ |
. . N . 2] 2] 148 123 ] 1.25] 1.23 | 1.23
Since link-state routing is feasible only for small net- 212 142 [ 127 | 115 [ 112 | 1.13
works [7], it is important to have an efficient, locally com- 6 | 2 || 125 | 1.18 | 1.09 | 1.05 | 1.08
putable routing algorithm. In [3], a recursive routing afgfom 8|2 112] 1.09 | 104 | 1.00 | 1.04
P e 23] 231] 1.63 ] 1.41 | 1.32 | 1.37
called DCellRouting is presented for theDCell. A similar e e e By e

algorithm can be devised for any generalized DCell. In this
section, we state a number of results concerning the patjtHen
distribution and flow distribution when using DCellRouting TABLE II: Expected value and standard deviation of path téng

h h Distributi distribution. DCR and SP stand for DCellRouting and shortes
A. Path-Length Distribution path routing, respectively.

As shown in [3], the longest path using DCellRouting is
2k+1 —1.
Fix a vertexv in a DCell, and letN} denote the number of  Finally, we point out that a simple double counting argument

servers that are exactiyhops away fromv in DCellRouting. shows that the expected value of the path-length distohus
It turns out thatN* is independent of the choice of as the related to the flow distribution as follows.

(b) Standard deviation

following theorem shows. Theorem 7:The expected value of the path-length distribu-
Theorem 5: N satisfies tion is given by
YiooF.
NE =1, (19) E = &L=0"L (25)
NZO = 0;0 + (n — 1)61'1, (20) e =1

V. EXPERIMENTAL RESULTS

1—1
NF = NFL LN NETINRSL fork,i>1. (21) In this section, we compare empirically the performance
[ J i—1—j
j=0 of DCellRouting and shortest path routing for the various
Here §;; is the Kronecker delta, which i$ if i = j and 0 connection rules. The simulations were necessarily oéstti
otherwi]se. to smalln andk; due to the the doubly exponential growth of

DCells, these are the only realistic valuesrofnd k.
B. Flow Distribution

Theorem 6:In all-to-all communication using DCeIIRout—A' Path-Length Distribution

ing, the number of flows™;, carried by aL-level link is Table Il compares, for some small and &, the mean and
standard deviation of the path length distribution whemgsi
2, for L =k, DCellRouting or shortest path routing. Shortest path rauti
) k=l for the ~ connection rule has the lowest expected value and
o 2 JJa+2t) fori<L<k-1, 22) standard deviation, making it the rule of choice. Fig. 2 show
L= J’:i_l the different path length distributions for = 4 and & = 3.
(n — 1)1—[(1 +2t,) for L=0. The other cases look similar.
J=0 B. Flow Distribution

Using Theorem 6 and Theorem 1, we can derive from theThe flow distributions by link level using shortest path
exact expression foFy, a fairly tight upper bound that is morerouting and DCellRouting are shown in Fig. 3 for= 4, k = 3.
readily compared to the previously known bouttd “#; [3].  Again, this figure is representative of the other cases asWel

Corollary 1: We have observe that DCellRouting does a poor job of load-balancing
Shortest path routing far-DCell does better than DCellRout-
ing on average, but has significant bottlenecks that excesd e
those of DCellRouting. Shortest path routing for they, andé
connection rules does better on average and also exhibigs ve

lp —tlo—1 51 tp —to—1, 51 good load-balancing: there are no significant bottleneaksli
Fr < tr+ 1 2 (0 +0.6) = tr+ 1 27 k(1+0(1))- e believe the asymmetry ef-DCell leads to bottlenecks in
(24) the flow distribution and the symmetry jhd,y-DCell leads to

n—1 n—1
2k (t, 4+ 0.6) = 2%t.(1+0(1)). (23
Forl < L < k, we have

Fy <
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balanced flow distribution. It appears thats again the rule of 10— ' ' pers
choice for all-to-all communication using shortest pathtimg. —o-SP

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a generalized DCell framework and 6l
several structures derived from this framework. We haveistl
the common graph properties such as scaling, diameter, and
symmetry. We also show that the newly introduced structures
have much smaller diameter and better load-balancing prope
ties than the original DCell.

The generalized DCell structure introduces a new and huge
degree of freedom: the choice of connection rule. We exgdlore 0 1 2 3
only a few of the many possible connection rules—chosen link level
largely for their mathematical simplicity and symmetry—dan (b) v-DCell
we are far from having a full understanding of how to desigpig. 3: Distribution of flows by link level using all-to-all
an optimal connection rule. We think the further explomtiocommunication for. = 4 andk = 3. The error bars indicate the
of this new degree of freedom has the potential to lead gaximum and minimum values. The performancejebCell
great improvements of the DCell structure. The improvedioaand 5-DCell is similar to that ofy-DCell.
balancing and smaller diameters we found are strong evéenc
for this.

Our future work is to design a practical and scalable shbrteg; c. uo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhgnand
path routing _algorithm f(_)r the generalized I_DCeII framework fS Ll\ljbéig:b& Q léigrr]mtgzril;]orpn:sgci,f iecr’\\;lersfggtg(’:vl NMezt\(/)vggclﬂtecture
We cannot d_|rectly use link-state based routing protocoths éﬂ ((:).rGuo, H. Wur, K. Tan, L. Shi, Y. Zhang, and S. LUI-HDCe”-: foslable
as OSPF, since they can only scale to at most a thousandang Fault-Tolerant Network Structure for Data Centeirs Proc. of ACM
routers. In our future work, we plan to design a shortestrpat SIGCOMM 2008.
based routing protocol by taking advantage of the fact thet t[4] F. Leighton.Introduction to Parallel Algorithms and Architectures: rays,

. . . Trees, Hypercubedviorgan Kaufmann, 1992.
network topology is known in advance in data centers. We algg p. Li, c. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu. “FiConn: idg

plan to program servers to handle network failures. Backup Port for Server Interconnection in Data CentérsProc. of IEEE
INFOCOM, 2009.
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