
SRNIC: A Scalable Architecture for RDMA NICs

Zilong Wang1∗ Layong Luo2 Qingsong Ning2 Chaoliang Zeng1∗ Wenxue Li1 Xinchen Wan1∗

Peng Xie2 Tao Feng2 Ke Cheng2 Xiongfei Geng2 Tianhao Wang2 Weicheng Ling2

Kejia Huo2 Pingbo An2 Kui Ji2 Shideng Zhang2 Bin Xu2 Ruiqing Feng2 Tao Ding2

Kai Chen1 Chuanxiong Guo3

1Hong Kong University of Science and Technology 2ByteDance 3Unaffiliated

Abstract
RDMA is expected to be highly scalable: to perform well
in large-scale data center networks where packet losses are
inevitable (i.e., high network scalability), and to support a
large number of performant connections per server (i.e., high
connection scalability). Commercial RoCEv2 NICs (RNICs)
fall short on scalability as they rely on a lossless, limited-scale
network fabric and support only a small number of perfor-
mant connections. Recent work IRN improves the network
scalability by relaxing the lossless network requirement, but
the connection scalability issue remains unaddressed.

In this paper, we aim to address the connection scalabil-
ity challenge, while maintaining high performance and low
CPU overhead as commercial RNICs, and high network scal-
ability as IRN, by designing SRNIC, a Scalable RDMA NIC
architecture. Our key insight in SRNIC is that, on-chip data
structures and their memory requirements in RNICs can be
minimized with careful protocol and architecture co-designs
to improve connection scalability. Guided by this insight, we
analyze all data structures involved in an RDMA conceptual
model, and remove them as many as possible with RDMA
protocol header modifications and architectural innovations,
including cache-free QP scheduler and memory-free selective
repeat. We implement a fully functional SRNIC prototype
using FPGA. Experiments show that, SRNIC achieves 10K
performant connections on chip and outperforms commercial
RNICs by 18x in terms of normalized connection scalability
(i.e., the number of performant connections per 1MB mem-
ory), while achieving 97 Gbps throughput and 3.3 µs latency
with less than 5% CPU overhead, and maintaining high net-
work scalability.

1 Introduction

Datacenter applications are increasingly driving the demands
for high-speed networks, which are expected to provide high

∗ This work is done while Zilong Wang, Chaoliang Zeng, and Xinchen
Wan are interns with ByteDance.

throughput, low latency, and low CPU overhead, with a large
number of connections (a.k.a., connection scalability), over a
large-scale network (a.k.a., network scalability). Specifically,
bandwidth-intensive applications like distributed machine
learning training [13, 23] and cloud storage [16, 18], require
100 Gbps and beyond network bandwidth between servers;
online services like search [9, 15] and database [25, 29], de-
mand low latency to minimize query response time; most
applications desire a network stack with low CPU overhead
to reserve as many CPU cores as possible for computations;
cloud storage like Alibaba Pangu [18] requires a large number
of performant connections per host to provide mesh communi-
cations between chunk servers and block servers; last but not
the least, high-speed networks tend to be deployed at larger
scale as their application footprints expand [19].

Remote Direct Memory Access (RDMA) is emerging as a
popular high-speed networking technique, thanks to its high
throughput, low latency and low CPU overhead provided by
architectural innovations including kernel bypass and trans-
port offload. With these advantages, RoCEv2 (RDMA over
Converged Ethernet Version 2) is becoming the de-facto stan-
dard for high-speed networks in modern data centers [4, 42].

Despite high performance and low CPU overhead, com-
mercial RoCEv2 NICs (RNICs) suffer from both network
scalability and connection scalability issues. On one hand,
the network scalability issue arises from PFC (Priority-based
Flow Control) which is required by RDMA to implement a
lossless network fabric. PFC brings issues such as head-of-
line blocking, congestion spreading, occasional deadlocks,
and PFC storms in large-scale clusters [18, 19, 21, 34, 42].
As a result, datacenter operators tend to restrict the PFC con-
figurations within a small network scope (e.g., a moderate
cluster). On the other hand, the connection scalability issue is
the phenomenon that RDMA performance drops dramatically
when the number of connections (a.k.a., queue pairs (QPs))
exceeds a certain small threshold (e.g., 256) [24, 28, 39]. Al-
though commercial RNICs are blackbox, the root cause of
this performance collapse phenomenon is explained as cache
misses due to context switch between connections [24].



To improve network scalability of RNICs, existing work
IRN [33] advocates lossy RDMA that eliminates PFC, by
replacing go-back-N with more efficient selective repeat (SR).
However, the introduction of SR is non-trivial: it adds some
SR specific data structures and thus increases memory con-
sumption. To reduce the on-chip memory overhead, IRN
makes some RoCEv2 header extensions, but still requires
3-10% more memory than existing RNIC implementations.
As a result, IRN achieves high network scalability but leaves
the connection scalability issue unaddressed.

In this paper, we propose SRNIC, a Scalable RDMA NIC
architecture to address the connection scalability issue, while
preserving high performance and low CPU overhead inherited
from transport offload as commercial RNICs, and maintain-
ing high network scalability originated from lossy RDMA as
IRN. The major insight of SRNIC is that, most on-chip data
structures and their memory requirements in RNICs can be
eliminated with careful protocol and architecture co-designs,
and the connection scalability of RNICs could be, as a re-
sult, significantly improved. Guided by this insight, we ex-
amine the typical data flow in a lossy RDMA conceptual
model (§3.1), analyze all the involved data structures, classify
them into two categories: common data structures required
by RDMA in general, and selective repeat specific data struc-
tures brought by lossy RDMA, and finally take customized
optimization strategies to minimize these two types of data
structures respectively to improve the connection scalability
(§3.2).

In particular, the cache-free QP scheduler proposed in §4.3
optimizes common data structures for RDMA designs no
matter whether the underlying network is lossy or lossless.
The optimizations of RDMA header extensions and bitmap
onloading introduced in §4.4 are for memory-free selective
repeat, hence specific for lossy RDMA.

We have implemented a fully functional SRNIC prototype
with FPGA (§5) and evaluated SRNIC’s scalability and per-
formance through the testbed and simulations. Experiments
(§6) show that SRNIC achieves high connection scalability,
while preserving high performance and low CPU overhead
as commercial RNICs, and high network scalability as IRN.
Specifically, SRNIC supports 10K1 connections/QPs without
performance degradation, which outperforms Mellanox RNIC
CX-5 by 18x in terms of normalized connection scalability
(i.e., the number of performant connections per 1MB mem-
ory). Meanwhile, SRNIC achieves 97 Gbps line-rate through-
put and 3.3 µs latency, with only 5% CPU overhead, which
are comparable with Mellanox RNICs. In addition, SRNIC
shows its high network scalability via high loss tolerance (3x
higher goodput than Mellanox RNICs under 1% loss rate) and
predictable performance in large-scale lossy networks.

As a summary, Figure 1 shows the design space of RDMA
NICs and makes a comparative analysis between different so-

1Unless otherwise stated, K is 1024 in measuring the size of memory,
data structures and messages, and 1000 in measuring the others.

Network Scalability

RDMA

IRNCommercial RNICs SRNIC

High throughput, low latency, low CPU overhead

(PFC + Go-back-N)
Connection Scalability

(256 QPs)

Network Scalability
(PFC-free + Selective Repeat)
Connection Scalability

(Unaddressed)

Network Scalability

Connection Scalability
(10K QPs)

(PFC-free + Selective Repeat)

Figure 1: Design space of RDMA NICs.

lutions. Although all RDMA hardware solutions provide high
throughput, low latency, and low CPU overhead via transport
offload and kernel bypass, their scalability varies. Commer-
cial RNICs suffer from both the network scalability issue
caused by the troublesome PFC, and the connection scala-
bility issue caused by unknown blackbox implementations.
IRN revisits the network supports for RDMA, and eliminates
the need of PFC by introducing selective repeat with 3-10%
extra memory overhead. As a result, the network scalability
is significantly improved, but the connection scalability is left
unsolved. SRNIC leverages the lossy RDMA approach of
IRN to improve network scalability, and further addresses the
connection scalability issue with the design guiding principle:
minimize the on-chip memory requirements of RNICs in a
simple yet performant way. As a result, SRNIC achieves both
high network scalability and connection scalability.

This paper makes the following major contributions:

• We systematically study and quantify the memory require-
ments of RDMA NICs, by introducing an RDMA concep-
tual model (§3).

• We design SRNIC, a scalable and high-performance RDMA
NIC architecture, that significantly improves the connection
scalability, guided by an insight that the on-chip memory
requirements in the conceptual model can be minimized
with careful RDMA protocol modifications and architec-
ture innovations, including cache-free QP scheduler and
memory-free selective repeat (§4).

• We implement SRNIC using FPGA, with only 4.4 MB on-
chip memory. The implementation achieves our design
goals on scalability, performance, and CPU overhead (§5
and §6).

2 Background and Motivation

2.1 RDMA Overview
Unlike the traditional software transport TCP, RDMA is a
hardware transport that implements the transport functionali-
ties including congestion control and loss recovery entirely in
NIC hardware, and provides kernel-bypass and zero-copy in-
terfaces to the user applications. As a result, RDMA achieves
high throughput, low latency, and low CPU overhead, com-
pared with software transport TCP [42].



RDMA was originally designed and simplified for lossless
Infiniband [1]. To make RDMA work in Ethernet, RoCEv2
relies on PFC [22] to turn Ethernet into a lossless fabric. How-
ever, PFC brings management risks and network scalability
challenges (e.g., PFC storms and deadlocks) that affect the
entire network’s availability and also causes collateral dam-
age to innocent flows due to head-of-line blocking [19, 42].
Besides, with PFC, the lossless network scale is also limited
by the switch buffer size. Consequently, datacenters usually
limit the scale of RDMA networks [18].

As the network scalability issue of RoCEv2 is mainly
caused by PFC, IRN [33] takes the first step to rethink
RDMA’s network requirements, eliminates PFC and allows
RDMA working well in lossy networks, by replacing the de-
fault lossy recovery mechanism go-back-N with more efficient
selective repeat. However, it leaves the connection scalability
challenge unsolved.

2.2 Connection Scalability Issue
Commercial RNICs face a well-known connection scalabil-
ity issue [24, 27, 28, 39], i.e., the RDMA performance drops
significantly as the number of QPs increases beyond a small
value (varies from 16 to 500 in different settings [28]). We
demonstrate this issue using off-the-shelf commercial RNICs
including Mellanox CX-5 and CX-6 [7, 8] with PFC enabled.
As shown in Figure 2a, the aggregate throughput of Mellanox
CX-6 drops 46% (from 97 to 52 Gbps) when the QP num-
ber increases from 128 to 16384, and there is no obvious
improvement of connection scalability from CX-5 to CX-6.

The root cause of RNIC’s performance degradation is com-
monly explained as cache misses [24, 28, 38]. Commercial
RNICs usually take a DRAM-free architecture, which does
not have DRAM connected directly to the RNIC chip to re-
duce cost, power consumption, and area, but just has limited
on-chip SRAM. As a result, RNICs can cache only a small
number of QPs on chip, while storing the others in host mem-
ory. When the number of active QPs increases beyond the on-
chip memory size, frequent cache misses and context switches
between host memory and RNIC cause performance collapse.
Our experiments in Figure 2b verify this in some sense. We
observed significant extra PCIe bandwidth2 and an increase
in ICM cache miss3 during the performance collapse. Both
metrics reflect certain kinds of cache misses, causing extra
PCIe traffic increase after 256 QPs.

Although on-chip SRAM is limited, it is abnormal in that
the performance drops so early. Given the on-chip memory
size and the QP Context (QPC) size for a QP, we can esti-
mate the maximum number of performant QPs that could be
supported without cache misses and performance collapse as:

max_QPs =
memory_size
sizeo f (QPC)

. (1)

2Extra PCIe throughput = PCIe throughput - network throughput.
3"ICM Cache Miss" is a counter provided by Mellanox Neohost tool [12].

RNIC CX-6
RNIC CX-5
TCP

256QPs

Th
ro

ug
hp

ut
 (G

bp
s)

50
60
70
80
90

100

QP Number
128 512 2048 8192

(a) Aggregate throughput

Extra PCIe BW
ICM Cache Misses

Ex
tra

 P
C

Ie
 B

W
 (G

bp
s)

14

16

18

IC
M

 C
ache M

isses

0
1×

10
62×

10
63×

10
6

QP Number
128 512 2048 8192

(b) ICM Cache misses and extra
PCIe traffic

Figure 2: Connection scalability issue of current RNICs. Com-
pared with TCP, the aggregate throughput of current RNICs
collapses when the number of QPs exceeds 256.

Let’s take Mellanox CX-5 as an example. Its on-chip mem-
ory size is ∼2 MB [24] and a QPC takes ∼375 B [24], so that
the maximum number of performant QPs supported by CX-5
could be up to 5.6K (2 MB/375 B), which contradicts the fact
shown in Figure 2a that CX-5 performance begins to collapse
much earlier at 256 QPs. The contradiction implies that there
is room to significantly improve the connection scalability.

Motivated by this contradiction, we systematically analyze
the memory requirements of RNICs, and improve the connec-
tion scalability based on the insights derived from thorough
memory analysis.

3 RNIC Memory Analysis

As commercial RNICs are blackbox, we are not able to use
their micro-architectures as a reference. Instead, we leverage a
lossy RDMA conceptual model with selective repeat to derive
the involved data structures (§3.1). Then, we summarize and
classify these data structures into two categories: common
data structures required by RDMA in general, and selective
repeat specific data structures brought by lossy RDMA, and
discuss different optimization strategies to minimize them
respectively to improve the connection scalability (§3.2).

3.1 RDMA Conceptual Model
Figure 3 shows an RDMA conceptual model, based on which,
a typical RDMA data flow consists of the following steps:

1. Requester: the user posts a work queue element (WQE)
into a send queue (SQ) to issue a SEND request. RNIC
fetches the WQE from the SQ to a WQE Cache.

2. Requester: RNIC gets the virtual address of the data
buffer by parsing the WQE, translates it into the physical
address through a Memory Translation Table (MTT),
and fetches data from the host data buffer using the physi-
cal address. RNIC then appends an appropriate RoCEv2
header onto the data and sends out the packet to the
responder. The metadata of all outstanding requests is



Requester Responder

SQ RQ CQ

DMA Engine

Data 
Buffer

Transport

Basic NIC

Send
WQE

Recv
WQE

CQE

WQE Cache
MTT

Receiving Buffer

ORT

Bitmaps

Reordering Buffer
QPC

DMA Engine

Transport

Basic NIC

WQE Cache

Bitmaps

Receiving Buffer

ORT
QPC

12

3

4

SQ RQ CQ

Send
WQE

Recv
WQE

CQEData
Buffer

5

5

6

6

MTT

PCIe

CPUCPU

RNIC RNIC

PCIe

Reordering Buffer

4

Figure 3: An RDMA conceptual model, and the RDMA data
flow using a small SEND message as an example.

stored in an Outstanding Request Table (ORT) for fast
retransmission in case of packet loss.

3. Responder: the incoming request is first queued in the
Receiving Buffer and then gets verified. Out-of-order
packets will be recorded in Bitmaps and reordered using
the Reordering Buffer.

4. Responder: upon receiving a SEND packet, RNIC
fetches a Receive WQE from a receive queue (RQ),
queries MTT to get the physical address of the host data
buffer, and DMAs the reordered data from the Reorder-
ing Buffer to the host data buffer.

5. Responder: RNIC replies an acknowledgment (ACK)
packet to the requester, and notifies the user with a com-
pletion queue element (CQE) to indicate the Receive
WQE is consumed.

6. Requester: RNIC receives the ACK, and generates a
CQE to indicate the Send WQE is consumed.

Besides, RNIC leverages a QPC per QP to track
QP/connection related contexts for all modules.

3.2 Data Structures
As concluded in Table 1, we classify the involved data struc-
tures into two categories: (1) common data structures, re-
quired by RDMA in general, and (2) selective repeat specific
data structures, brought by lossy RDMA.

3.2.1 Common Data Structures

Common data structures are essential to RDMA in general,
no matter whether the underlying network is lossy or lossless.

Receiving Buffer. The receiving buffer in the Basic NIC
module is used to queue all incoming packets. Its major pur-
pose is to absorb bursts caused by the temporal performance
gap between the upstream Ethernet port and the whole down-
stream RNIC processing logic.

QPC. A QPC maintains for a QP all its contexts, including
the DMA states (e.g., the start and end addresses, read and
write pointers of SQ & RQ), and connection states (e.g., ex-
pected and next packet sequence numbers, window or rate for
congestion control). The QPC size we allocate for each QP is
210 B, so the total size for 10K QPs is 2.0 MB.

MTT. RDMA uses virtual addresses in the packet while
the PCIe system relies on physical addresses to perform DMA
transactions. To perform address translation, RNIC maintains
an MTT to map virtual pages of memory regions into physical
pages. The size of MTT depends on the total size of memory
regions and the page size, irrelevant to the number of connec-
tions. For example, considering the total memory region size
of 4 GB, the page size of 4 KB, and an MTT entry size of 8 B,
the MTT size is equal to 4GB/4KB∗8B = 8MB.

WQE Cache. An SQ WQE cache could be used to cache
the Send WQEs fetched from an SQ in host memory. Assum-
ing each QP stores 8 WQEs (64 B*8) in a dedicated cache,
10K QPs consume 4.9 MB on-chip memory. Similarly, RNIC
needs to fetch Receive WQEs from the RQ to process incom-
ing SEND requests, and could allocate an RQ WQE cache to
store the fetched Receive WQEs. The memory size of the RQ
WQE cache is similar to that of the SQ WQE cache.

3.2.2 Selective Repeat Specific Data Structures

These data structures are all introduced by lossy RDMA using
selective repeat as the loss recovery mechanism.

Bitmap. Bitmaps are used to track which packets are re-
ceived or lost [31]. As mentioned in IRN [33], each QP re-
quires five BDP (bandwidth-delay product)-sized bitmaps
(500 slots for each bitmap to fit the BDP cap of a network
with bandwidth 100 Gbps and RTT 40 µs [5]) and 10K QPs
cost 3.0 MB memory in total.

Reordering Buffer. A reordering buffer is used to rear-
range the out-of-order packets and ensure in-order delivery
to the data buffer in host memory. The reordering buffer is
required in a lossy RNIC implementation with the standard
RoCEv2 header. As RoCEv2 is designed for the lossless net-
work, its header lacks the necessary information to support
out-of-order packet reception without extra reordering buffers.

One option is to allocate a separate reordering buffer for
each QP. Each QP requires a BDP-sized (0.5 MB) reorder-
ing buffer, so it takes 4.9 GB memory to support 10K QPs.
Another option is to maintain a shared reordering buffer for
all QPs [31]. However, it does not scale. When multiple QPs
experience out-of-order packets, it may soon run out of the
shared buffer with limited on-chip SRAM. Hence, we choose
the separate reordering buffer option in the analysis.



Category Data structures Typical sizes Optimization ideas Sizes after optimization

Common

Receiving Buffer 0.6 MB None 0.6 MB
QPC 2.0 MB None 2.0 MB
MTT 8 MB Cache (§4.5) 1.2 MB
WQE Cache 9.8 MB Cache-free QP scheduler (§4.3) 0

SR Specific
Bitmap 3.0 MB Bitmap onloading (§4.4.2) 0
Reordering Buffer 4.9 GB Header extensions (§4.4.1) 0
Outstanding Request Table 114.4 MB Header extensions (§4.4.1) 0

Table 1: Data structures in the RDMA conceptual model. The first three columns show the typical data structures and their
memory requirements with 10K QPs. The last two columns summarize our ideas to minimize the on-chip memory requirements
of these data structures, and show the memory size after optimization.

Outstanding Request Table. Outstanding request table is
used to maintain the mapping between outstanding request
packets and their metadata, which are used to quickly lo-
cate and retransmit the lost packets. These metadata include
(1) packet sequence number (PSN), used to track packet se-
quences, (2) message sequence number (MSN), used to track
message sequences and to locate the WQE associated with
that message quickly, and (3) packet offset (PSN_OFFSET),
used to locate the data offset inside the corresponding data
buffer. With these fields, the outstanding request table size for
each QP is 11.7 KB (given the entry size 24 B, entry number
500 sized to BDP), and 10K QPs consume 114.4 MB in total.

In summary, all the data structures derived from the RDMA
conceptual model could be classified into two categories: com-
mon data structures required by RDMA in general, and selec-
tive repeat specific data structures brought by lossy RDMA.
Table 1 summarizes the memory requirements of these data
structures in the third column. Both categories require signifi-
cant memory sizes, and thus need to be optimized to improve
connection scalability.

To this end, we make different optimization strategies to
minimize these two types of data structures respectively. In
particular, all the common data structures required by RDMA
should be optimized in a generic way, with architectural inno-
vations that are not specific to lossless or lossy RDMA. The
cache-free QP scheduler proposed in §4.3 falls into this strat-
egy. On the other hand, all the selective repeat specific data
structures brought by lossy RDMA, could be optimized based
on the lossy network assumption. The header extensions and
bitmap onloading approaches in the memory-free selective
repeat architecture in §4.4 follow this strategy.

4 SRNIC Design

4.1 Design Goal and Guiding Principles

In the design space of RDMA NICs, Mellanox RNICs rep-
resent the state-of-the-art in terms of high performance and
low CPU overhead, and IRN is the state-of-the-art in network
scalability. The design goal of SRNIC is to maximize the con-

nection scalability, while preserving high performance and
low CPU overhead as Mellanox RNICs, and maintaining high
network scalability as IRN.

To achieve this goal, we follow three design guiding prin-
ciples:(1) keep as many RDMA functionalities as possible
in hardware to achieve high performance and low CPU over-
head; (2) handle packet loss as efficient as possible to allow
discarding PFC and thus to support large-scale lossy networks;
and (3) reduce the on-chip memory requirements as much as
possible to support a large number of performant QPs with a
limited amount of memory.

4.2 Architecture Overview

Guided by the above principles, we design a scalable RDMA
NIC architecture SRNIC, as shown in Figure 4.

The server CPU allocates and manages QPs in the RNIC
driver, and runs applications in user space over these QPs. Be-
sides, a software retransmission module resides in user space
to maintain the memory-consuming retransmission states col-
lected by hardware and assist packet loss processing (§4.4).
A pair of control queues (CtrlQs) is used as the communica-
tion channel between the software retransmission module and
RNIC hardware.

RNIC hardware consists of three layers: DMA Engine,
Transport, and Basic NIC. The DMA Engine layer leverages a
QP scheduler to schedule tens of thousands of QPs from host
memory, decides which QP to send data next, and then fetches
WQEs and data from that SQ via data mover. The Transport
layer realizes most of RDMA transport functionalities (except
for the software retransmission in CPU), including a con-
gestion control module that implements a hardware-friendly
DCTCP [14], and a hardware retransmission module that im-
plements the hardware part of selective repeat. The Basic NIC
layer implements the primary functions of the Ethernet NIC,
responsible for sending and receiving RoCEv2 packets via the
100GE MAC. In addition to these three layers, there are two
major data structures: QPC, which maintains all QP-related
contexts, and MTT, which stores the mapping between virtual
and physical addresses.



Software
Retransmission

PCIe

Driver

CPU

RNIC

DMA 
Engine

Transport

Basic NIC
100GE MAC

QP

Data Mover QP Scheduler

SQ RQ CQ

CtrlQ

Tx Rx

QPCCongestion 
Control

Hardware 
Retransmission

Application Buffer

User space

MTT

RetryQ

Outbound Path Inbound Fast Path Inbound Slow Path

Figure 4: SRNIC architecture.

In order to balance performance and scalability, the data
path of SRNIC is divided into a fast path and a slow path
(§4.4), which handle sequential and out-of-order (OOO) pack-
ets, respectively. The fast path wholly implemented in RNIC
processes the majority of traffic consisting of sequential pack-
ets, and thus provides hardware-level high performance with
low CPU overhead for most packets. The slow path imple-
ments software retransmission, processes very little traffic
consisting of OOO packets, and onloads bitmaps to host mem-
ory for connection scalability.

The overhead of the data path separation is very low for
two reasons. First, the average packet loss rate in data centers
is low (less than 0.01% [20, 41, 43]), and the resulting OOO
packets form a very small fraction of traffic. Second, SRNIC
only transmits loss events (i.e., metadata of the OOO packets)
over PCIe, further reducing the PCIe overhead. For example,
the extra PCIe overhead is only 2.46% even with 1% loss rate.

Based on the above architecture, we further make two criti-
cal design optimizations: cache-free QP scheduler (§4.3) and
memory-free selective repeat (§4.4) to optimize RDMA com-
mon data structures and lossy RDMA specific data structures,
respectively, in order to address the scalability issues while
preserving high performance.

4.3 Cache-free QP Scheduler
4.3.1 SQ Scheduler

An SQ is either active when it contains WQEs or inactive oth-
erwise. The SQ scheduler (as modeled in Figure 5a) chooses
one active SQ each time from tens of thousands of SQs in
host memory to send messages next. The design challenges

…
Tens of thousands of SQs

SQ Scheduler

Congestion 
Control

credits

Send 
WQE

Host

RNIC

(a) SQ scheduler model.

…
Tens of thousands of RQs

RQ Scheduler

Recv
WQE

Host

RNIC

(b) RQ scheduler model.

Figure 5: The QP scheduler models.

of the SQ scheduler are as follows:

• Challenge #1: Active SQs cannot be scheduled blindly,
as they are also subject to congestion control, as shown
in Figure 5a. Once an SQ is scheduled, if it is not allowed
to send messages due to the lack of credits granted by
congestion control, the scheduling does not take effect
but just wastes time and degrades performance.

• Challenge #2: The PCIe round-trip latency between
RNIC and host memory is high (around 1 µs in FPGA
based RNIC), and it takes at least two PCIe transactions
(one WQE fetch and one message fetch), to execute one
scheduling decision. Without careful design, the high
latency between scheduling iterations will significantly
degrade the performance.

• Challenge #3: There are tens of thousands of SQs in
host memory but very limited on-chip memory within
RNIC. It is prohibitive to have separate WQE caches for
different SQs in the RNIC.

To address these challenges, SQs should be scheduled when
they are both active and have credits (to address Challenge
#1), with appropriate batch transactions to hide PCIe latency
(to address Challenge #2), and in a WQE-cache-free way (to
address Challenge #3).

Guided by these principles, we propose a cache-free SQ
scheduler (as shown in Figure 6) that can do fast scheduling
among tens of thousands QPs with minimal on-chip memory
requirements. It consists of three major components:
Event Mux (EMUX): The EMUX module handles all
scheduling related events, including (1) SQ doorbell4 from
the host to indicate which SQ has new WQEs and messages
to send; (2) credit update from the congestion control module
to indicate window or rate adjustment for a connection/SQ;
and (3) dequeue event from the schedule queue to indicate an
SQ is scheduled.

Upon receiving an event, EMUX changes the scheduling
states in QPC. There are three scheduling states: an active
state indicating the SQ has WQEs; a credit value indicating

4Doorbell is the mechanism for the driver to notify RNIC that a SEND
WQE has been posted into an SQ [26]. It is usually implemented by updating
the write pointer of the SQ into an RNIC register.



doorbell
credit

RNIC

Host

3
Schedule QueueQPC

Congestion
Control

Scheduler

…

SQ1 SQ2 SQ3 SQ4

…

dequeue

QP1: active 0, credit 1, ready 0

QP2: active 0, credit 1, ready 0

QP3: active 1, credit 1, ready 1

QP4: active 1, credit 0, ready 0

DMA 
Engine

WQE

enqueue

Data 
Buffer

Schedule
Policy

Event Mux

Figure 6: The cache-free SQ scheduler.

the bytes of messages allowed to send, and a ready state indi-
cating the SQ is in the schedule queue and ready for schedul-
ing. An SQ is ready for scheduling only when it is both active
and has available credits, which addresses Challenge #1.
Scheduler: The scheduler leverages a schedule queue to
maintain a list of SQs ready for scheduling. The scheduler
implements a round-robin strategy in the schedule policy
module, by popping a single ready SQ from the head of the
schedule queue each time, and fetching from that SQ a given
amount of WQEs and messages. After this scheduling itera-
tion, if the SQ is still ready for scheduling, it will be pushed
back into the schedule queue by the EMUX. Other scheduling
strategies (e.g., weighted round-robin and strict priority) can
be implemented by modifying the schedule policy module.
DMA Engine: When an SQ is being scheduled, the
DMA engine fetches from that SQ up to n WQEs and
min(burst_size,credit) bytes of messages to address Chal-
lenge #2. After a scheduling iteration, there could be unused
WQEs left in RNIC, if the total message size associated with
the n WQEs is over min(burst_size,credit) bytes. Unused
WQEs are dropped instead of being cached in RNIC, and
they will be fetched again next time when its SQ is scheduled.
This fetch-and-drop strategy enables us to achieve cache-free
scheduling to address Challenge #3.

There are two critical parameters (n and burst_size) to bal-
ance tradeoffs. n is the maximum number of WQEs, and
burst_size is the maximum bytes of messages allowed to
fetch in each scheduling iteration. n reflects the tradeoff be-
tween PCIe bandwidth usage and PCIe latency hiding. A
smaller n would lead to less PCIe bandwidth waste in the
fetch-and-drop strategy, but be harder to hide the PCIe latency
or saturate the PCIe bandwidth with small messages, while
a larger n would perform inversely. In SRNIC, n is set to 8
to balance the PCIe bandwidth utilization and latency hid-
ing. With this setting, the maximum message rate of a single
QP is 8 million requests per second (Mrps) (i.e., 8 messages
per 1 µs). As for burst_size, it reflects the tradeoff between
PCIe bandwidth utilization and scheduling granularity. A

smaller burst_size would enable finer scheduling granularity
and hence less HoL, but be harder to saturate PCIe bandwidth,
while a larger burst_size would perform inversely. Based on
this analysis, we set burst_size to the PCIe BDP, i.e., 16 KB,
to balance performance and scheduling granularity.

In summary, the SQ scheduler adopts a cache-free archi-
tecture to do fast scheduling among a large number of SQs
with minimal on-chip memory. Specifically, the width of the
schedule queue is 2 bytes, i.e., the QPN (QP Number) size,
and a schedule queue of 19.5 KB can support 10K SQs.

4.3.2 RQ Scheduler

The RQ scheduler is modeled as shown in Figure 5b. Upon
receiving a packet, RNIC gets its QPN by parsing the packet
header, fetches a Receive WQE from the RQ indicated by
that QPN, and places the packet payload into the data buffer
associated with that Receive WQE.

This process seems straightforward, but there is one design
decision affecting connection scalability: do we prefetch and
cache Receive WQE in RNIC before the packet arrives?

If Receive WQEs are prefetched and cached, the incoming
packet could hit the WQE cache, reducing the latency by
one PCIe round-trip time (i.e., around 1 µs). However, it is
hard to predict from which RQ to prefetch Receive WQEs
before packets arrive, and thus the cache hit ratio largely
depends on the traffic pattern and the cache size. Therefore,
we decide to take the cache-free approach without prefetching
or caching Receive WQEs, thus improving the connection
scalability. Given that the typical RDMA network latency for
small messages is tens of microseconds in data centers(e.g.,
for 1KB messages, RDMA P50 and P99 latency is 24us and
40us, respectively [5]), the increased 1 µs latency is generally
negligible. For latency-sensitive scenarios where 1 µs matters,
like in rack-scale deployments, a shared Receive WQE cache
can be brought back to optimize the latency.

4.4 Memory-free Selective Repeat

The introduction of selective repeat into RNICs increases the
challenge to achieve high connection scalability. As analyzed
in §3.2.2, the extra data structures brought by selective repeat
include outstanding request tables, reordering buffers, and
bitmaps, whose memory requirements in total exceed the
typical on-chip SRAM sizes of RNICs.

To minimize the memory requirements introduced by se-
lective repeat, SRNIC eliminates the need for outstanding
request tables and reordering buffers via RDMA protocol
header extensions (§4.4.1), and onloads bitmaps into host
memory without sacrificing performance via careful software-
hardware co-designs (§4.4.2).



4.4.1 Header Extensions

As described in §3.2, the outstanding request table is used
to maintain for each QP the mapping between outstanding
request packets and their metadata including PSN, MSN, and
PSN_OFFSET for fast selective retransmission. We eliminate
the need for this data structure, by carrying these per-packet
metadata on packet headers, instead of storing them in the
on-chip memory. Specifically, we let all outstanding request
packets carry these metadata on their headers, and let their
response packets echo the same metadata back. In this way,
the requester can locate the WQE and its message quickly
with metadata in the response packet header.

The reordering buffer is used by each QP to rearrange
the OOO packets and ensures in-order delivery to the data
buffer of user applications. To get rid of the per-QP reordering
buffer, our approach is in-place reordering, i.e., leveraging
the user data buffer pinned in host memory as the reordering
buffer. To achieve this, all incoming packets should be placed
directly into the user buffer at correct addresses. We make
the following header extensions so that RNIC can derive the
address for each packet by parsing its header: (1) all SEND
packets carry send message sequence number (SSN) and the
aforementioned PSN_OFFSET, which can be used by the
RNIC responder to locate the corresponding receive WQE
and the offset in its associated receive buffer. (2) all WRITE
packets carry their target remote addresses [33].

As to RDMA READ, we add acknowledgements to READ
requests and responses respectively to add self-clocking for
RDMA READ, and schedule RDMA READ at the responder
side similar to RDMA WRITE. By doing so, we can apply
similar header extensions of SEND and WRITE for READ
request and response packets, and more importantly, we can
apply window-based congestion control for RDMA.

With these modifications, both sequential and out-of-order
packets can be placed directly into the user buffer at the cor-
rect address, thus achieving in-place reordering and eliminat-
ing per-QP reordering buffer in the on-chip memory.

The aforementioned extensions add 8 to 20 bytes of headers
to packets. In particular, the header is increased from 58 to
66 bytes for SEND and from 58 to 78 bytes for WRITE,
which will decrease the application goodput by 0.7% and
1.8%, respectively, given 1024 byte RoCE MTU.

4.4.2 Bitmap Onloading

As mentioned in §3.2.2, each QP requires five BDP-sized
bitmaps, and 10K QPs need 3.0 MB memory to store bitmaps,
which alone may exceed the RNIC on-chip memory size (e.g.,
2 MB in Mellanox RNIC [24]), thus increasing the challenge
to achieve high connection scalability.

We observe that, when there is no packet loss, packets from
the same QP are sent and received in order, and an expected
PSN (ePSN) in the responder and a last acknowledged PSN

metadata 
(PSN & lACK)

RN
IC

CPU

CtrlQ
RxPSN=“eACK”?

Per-QP Bitmaps
0 1 0

RetryQ
ePSN

1

2

Transport 
Logic

ePSNlACK
QPC

response
packet

yes no
2

Requester

Responder

metadata 
(PSN & ePSN)

RN
IC

CPU

CtrlQ
RxPSN=“ePSN”?

Per-QP Bitmaps

0 1 0

ePSN

1

2

Transport 
Logic

ePSNePSN
QPC

request
packet yes no

2
Tx

Update ePSN
3

Retransmission
3

Figure 7: Selective repeat with bitmap onloading.

(lACK) in the requester are enough to track the sequential re-
ception of request and response packets, respectively, without
the need of bitmaps; when there is packet loss, OOO packets
appear, and bitmaps are only required to track OOO packets.

Based on the above observation, for each QP we maintain
an ePSN and a lACK in QPC to process sequential packets in
hardware, and onload all bitmaps into host memory to track
OOO packets. Assume packet loss rate is low and sequential
packets are the majority, most traffic is handled by hardware
directly, and little traffic containing the OOO packets is han-
dled by software with the memory-consuming bitmaps in
host memory. In this way, we achieve a balance between high
performance and high connection scalability.

Figure 7 shows the software-hardware co-designed selec-
tive repeat architecture with bitmap onloading. On the respon-
der side, the PSN of an inbound request packet is compared
against the ePSN (À). If they match (Á), it is a sequential
packet and will be handled in the RNIC; otherwise (Á), it
is an OOO packet and the responder enters into the loss re-
covery state. In this state, the metadata (PSN and ePSN) of
all incoming OOO packets is sent to software, which then
fills the bitmaps in host memory to track received packets.
After lost packets are received and bitmaps are filled accord-
ingly, a new ePSN is updated (Â), and the RNIC exits from
the loss recovery state. On the requester side, the PSN of
an inbound response packet is compared against an eACK
(i.e., a coalesced ACK greater than the lACK) (À). If they
match (Á), the lACK is updated in hardware; otherwise (e.g.,
upon receiving NACK or SACK) (Á), the requester enters
into the loss recovery state. In this state, the metadata of all
incoming OOO response packets including PSN and lACK is
sent to the software retransmission module, which then ma-
nipulates the bitmaps in host memory to track which packets
are received by the responder, and makes retransmission de-
cision accordingly. The retransmitted requests are submitted
through a Retry Queue (RetryQ) associated with each QP (Â).
After all retransmitted packets are successfully delivered (in-
dicated by ACKs), the requester exits from the loss recovery
state. Another option is to keep bitmaps only in the responder
and make the requester stateless. Then, the responder should
notify the requester exactly which packets to be retransmitted.



CPU

1 1

ePSN=0
psn_left=2

psn_right=4

bitmaps

RNIC

23incoming packets

1 0

update ePSN=3

metadata 
(PSN & ePSN)

2

1

3

0
0 1 2 3 4

QPC

Transport

fall into [2,5]
new ePSN=5

104

Figure 8: Fast exit from the loss recovery state.

A race condition may arise in the responder when exiting
from the loss recovery state. Specifically, when the software
updates the new ePSN, there might be inflight metadata of
OOO packets with newer PSN between RNIC and CPU. In
this case, the updated ePSN is not the latest, and thus the exit
fails. To address the race condition problem while preserv-
ing high performance, RNIC records the range of the most
advanced sequential packets (via [psn_le f t, psn_right]) af-
ter it enters the loss recovery state. A QP can exit from the
loss recovery state if the updated ePSN falls into [psn_le f t,
psn_right +1] range, and the ePSN in QPC will be updated
to psn_right +1, as illustrated in Figure 8.

4.5 Other Design Considerations
With the cache-free QP scheduler and memory-free selective
repeat, all data structures shown in Table 1 are eliminated,
except for the receiving buffer, QPC, and MTT.

Receiving Buffer is a shared packet buffer among all QPs
and its size is small, so it is not optimized in this paper.

QPC is essential to maintain the per-QP states, and is in-
volved in per-packet processing. To support a large number
of performant QPs, we have to store their QPCs entirely in
on-chip memory. Therefore, this part is not eliminated, and
we preserve as much on-chip memory as possible for QPC to
maximize the number of performant QPs.

MTT is memory-consuming as analyzed in §3.2 (e.g., 4 GB
memory region requires 8 MB MTT size). Therefore, MTT
is maintained in the host memory, and an MTT cache is im-
plemented inside the RNIC by leveraging traffic locality. The
cache size does not increase with the number of QPs, and
its performance is highly related to traffic patterns. In ad-
dition, adopting hugepages (e.g., 2MB/1GB) is a classical
optimization to reduce the memory size of address translation
tables [24, 40], but requires modification to the applications.

4.6 Design Summary
The last two columns of Table 1 summarize our ideas to
minimize the RDMA related data structures, and show the
memory requirements after optimizations. Specifically, we
eliminate the WQE cache through a cache-free QP scheduler,
eliminate all SR-related data structures in on-chip memory
through SR-friendly header extensions and bitmap onloading,

Resource Usage

LUT Register BRAM URAM

101102 140816 621 48

Memory Breakdown (MB)

QPC MTT Receiving Buffer SQ Scheduler Total

2.3 1.2 0.6 0.3 4.4

Table 2: Resource usage of the SRNIC prototype.

and minimize the on-chip memory requirements of MTT with
a cache, while keeping the large MTT table in host memory.

5 Implementation

We build a fully functional prototype of SRNIC using a Xilinx
FPGA board with a PCIe Gen3 x16 interface and a 100 Gbps
Ethernet port, running at a clock frequency of 300 MHz.
Congestion Control. Since SRNIC introduces ACK based
self-clocking for RDMA READ, we therefore can use
window-based congestion control for RDMA. Window-based
approach in general is more friendly for hardware implementa-
tion than rate-based congestion control due to its self-clocking
mechanism. More specifically, window-based design is event-
driven: congestion window update events are triggered by
inbound acknowledgement packets, and window based con-
gestion control for each flow is applied at QP scheduling
events. These events are naturally serialized and can be pro-
cessed one by one. On the other hand, rate-based congestion
control is timer-driven. It is challenging to support a large
number of timer-based rate limiters in parallel for many con-
current flows. In SRNIC, we use DCTCP.
Memory Consumption. We realize 10K QPs in SRNIC and
the resource consumption is broken down in Table 2. SRNIC
consumes 4.4 MB on-chip SRAM in total. The QPC table,
whose size increases linearly with the QP number, occupies
2.3 MB5 for 10K QPs. The remaining memories are used by
QP-irrelevant data structures, including MTT cache, receiving
buffer, and SQ scheduler, which consume constant memories
when the QP number increases.

Per Table 2, the precious on-chip SRAM of SRNIC is
mainly partitioned between the two most memory-consuming
data structures: the QPC table and the MTT cache. A larger
QPC table would support more performant QPs, while a larger
MTT cache could provide a higher cache hit rate during ad-
dress translation thus better performance. The best on-chip
memory partition strategy between the QPC table and the
MTT cache highly depends on scenarios, and it’s an interest-
ing problem to explore in the future.

5This is slightly larger than 2 MB calculated in Table 1 due to memory
alignment overhead, e.g., each memory depth should be a power of 2 in FPGA
implementation.



SRNIC
RNIC CX-6
RNIC CX-5
TCP

Ag
gr

eg
at

e 
Th

ro
ug

hp
ut

 (G
bp

s)

50

60

70

80

90

100

QP Number
128 256 512 1024 2048 4096 8192 10K

Figure 9: Connection scalability. SRNIC maintains constant
high throughput as the number of QPs increases, while the
performance of commercial RNICs (Mellanox CX-5 & 6)
drops dramatically when the QP number exceeds 256.

6 Evaluation

We evaluate SRNIC using both testbed experiments and large-
scale ns-3 simulations [10], and compare it with Mellanox
RNICs, IRN, and TCP. Our results reveal that:

• SRNIC achieves high connection scalability: it supports
10K performant QPs, outperforming Mellanox RNIC CX-5
by 18x in terms of normalized connection scalability.

• SRNIC achieves high throughput (97 Gbps), low latency
(3.3 µs), and low (5%) CPU overhead.

• SRNIC achieves high network scalability: it is loss-tolerant
(up to 75 Gbps goodput under 1% loss rate) and maintains
predictable performance over large-scale lossy networks.

6.1 Connection Scalability
We compare SRNIC with Mellanox RNIC CX-5, CX-6, and
TCP in terms of connection scalability. The settings of the
testbed experiments are as follow. We connect two RNICs
directly and launch 16 threads on each side, with each thread
executing 512 B send operations. We set the RoCE MTU to
1024 bytes, and use the standard per f test benchmarks [11]
in all experiments. With the above settings, we measure the
aggregate throughput of these solutions while increasing the
number of QPs from 128 to 10K, as shown in Figure 9.

SRNIC preserves the highest aggregate throughput almost
unchanged at around 97 Gbps when the QP number increases
from 128 to 10K. This is expected, as SRNIC keeps the QPC
of 10K QPs entirely in the on-chip memory while eliminating
or minimizing all other data structures.

TCP also preserves relatively high performance (from 81
to 96 Gbps), as it maintains the contexts of 10K connections
in the large host memory, demonstrating high connection
scalability but lower and unpredictable performance.

In contrast, the aggregate throughput of Mellanox RNICs

CX-5 and CX-6 drops dramatically when the QP number ex-
ceeds 256 due to frequent cache misses, as explained in §2.2.

In summary, SRNIC provides much higher connection scal-
ability than commercial RNICs. Specifically, SRNIC realizes
10K QPs with 4.4 MB memory, while Mellanox CX-5 sup-
ports 256 QPs with 2 MB memory. To make a fair comparison,
we define normalized connection scalability as the number of
performant connections per 1 MB on-chip memory. SRNIC
outperforms Mellanox CX-56 by 18x (10 K QPs/4.4 MB vs.
256 QPs/2 MB) in terms of normalized connection scalability.

6.2 Performance and CPU Overhead
We compare SRNIC with CX-67 and TCP in terms of through-
put, latency, and CPU overhead using a single connection,
with the same settings as above (i.e., 1024-byte RoCE MTU,
two NICs are connected directly).
Throughput. The throughput comparison is shown in Fig-
ure 10a. When the message size exceeds 4 KB, SRNIC and
CX-6 both achieve line-rate throughput (97 Gbps), whereas
TCP can only achieve up to 37 Gbps since the single CPU core
becomes the bottleneck. In our experiments, the maximum
message rate that SRNIC can achieve is 6.6 Mrps, comparable
to that of the CX-6 (6.3 Mrps). This confirms that RNIC can
achieve a high message rate without WQE cache. As men-
tioned in §4.3.1, the message rate of SRNIC depends on the
batch size of the SQ scheduler. In our implementation, the
SQ scheduler can request at most 8 WQEs at a time and the
average PCIe RTT we measured is 1.1 µs, therefore our result
is close to the upper bound of 7.2 Mrps.
Latency. We measure the latency for transmitting 64 B small
messages. As Figure 10b shows, the latency of SRNIC is
about 3.3 µs, slightly higher than that of CX-6 (1.16 µs). We
believe this gap comes from the extra 1 µs added by the cache-
free QP scheduler and the clock frequency difference between
FPGA (300MHz) and ASIC (GHz) implementations. The la-
tency would be decreased if SRNIC adopts the shared Receive
WQE cache or is implemented in ASIC. In contrast, TCP has
the highest latency of 24 µs, indicating that bypassing ker-
nel and offloading transport in RDMA is vital for significant
latency reduction.
CPU overhead. As shown in Figure 10c, the CPU overhead
of SRNIC and CX-6 both maintains at a low level (< 5%)
thanks to transport offload and kernel bypass. TCP consumes
much more CPU cycles at both the client and server sides
(around 100% CPU utilization, not shown in the figure).

6.3 Network Scalability
Finally, we evaluate the network scalability of SRNIC. We
show the efficiency of loss recovery in SRNIC with testbed

6We know the on-chip memory size (i.e., 2 MB) of CX5 [24] but not CX6,
so we only compare with CX-5 in terms of normalized connection scalability.

7CX-5 and CX-6 behave similarly, so we only show CX-6 thereafter.



SRNIC
RNIC CX-6
TCP

Th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

80

100

Message Size (Bytes)
8 16 64 256 1K 4K 16K 64K 256K 1M

(a) Throughput

Ti
m

e 
to

 T
ra

ns
fe

r 6
4B

 (μ
s)

0

5

10

15

20

25

TCP RNIC CX-6 SRNIC

(b) Latency

SRNIC-Client
SRNIC-Server

RNIC CX-6-Client
RNIC CX-6-Server

C
PU

 U
til

iz
at

io
n 

(%
)

2

4

6

Message Size (Bytes)
16 256 4K 64K 1M

(c) CPU overhead

Figure 10: Performance and CPU overhead. SRNIC achieves
high throughput, low latency, and low CPU overhead, similar
to CX-6.

experiments, and the performance of SRNIC over large-scale
lossy networks via simulations.
Loss tolerance. We compare the goodput of SRNIC with
CX-6 at different packet loss rates, which are emulated by
placing an FPGA between two RNICs and letting the FPGA
randomly drop packets at given rates. We use per f test to
generate 4 KB messages continuously. We disable congestion
control here to exclude the influence of congestion control on
loss tolerance, and only compare the loss recovery efficiency
between selective repeat in SRNIC and go-back-N in CX-6.

Figure 11 compares SRNIC with CX-6 in terms of goodput
under different loss rates. The goodput of CX-6 drops rapidly
when the loss rate exceeds 0.1%. In particular, the CX-6
goodput is down to 25 Gbps when the loss rate exceeds 1%.
Meanwhile, we monitor the MAC statistics counters in CX-6
and get its raw throughput of ∼97 Gbps, which indicates that
most of the RNIC bandwidth is wasted on retransmission
caused by go-back-N. The goodput of SRNIC drops much
slower than that of CX-6. When the loss rate exceeds 1%, the
goodput is still 75 Gbps, 3x higher (75 vs. 25 Gbps) than that
of CX-6.

The good loss tolerance of SRNIC comes from both the
efficiency of selective repeat and its careful software-hardware
co-designs in §4.4.2.
Performance in large-scale lossy networks. We use ns-3 to
simulate the transport behavior of SRNIC, and compare it with
CX-6 and IRN in large-scale lossy networks. We simulate

SRNIC
RNIC CX-6

G
oo

dp
ut

 (G
bp

s)

0

20

40

60

80

100

Loss Rate
10−6 10−5 10−4 10−3 10−2

Figure 11: Loss tolerance. SRNIC achieves higher goodput
than CX-6 when loss rate increases, as the number of retrans-
mitted packets with selective repeat is much fewer than that
with go-back-N.

CX-6 Avg
CX-6 Tail

IRN Avg
IRN Tail

SRNIC Avg
SRNIC Tail

FC
T 

(m
s)

0
1
2
3
4
5

Server Number
16 64 256 1024 4096

(a) Average and tail FCT

CX-6 Avg
IRN Avg

SRNIC Avg

Sl
ow

do
w

n

0

2

4

6

8

Server Number
16 64 256 1024 4096

(b) Average slowdown

Figure 12: Performance at different network scales.

the fat-tree topologies with the server number ranging from
16 to 4096, with the (ToR, Aggregate, Core) switch number
varying among five settings: (1, 0, 0), (4, 4, 0), (8, 8, 0), (64,
64, 16) and (128, 128, 64). The subscription ratio is 1:1 in
all topologies. We equip each server with one 100 Gbps NIC
connected to one ToR. ToR, Aggregate, and Core switches
are connected via 400 Gbps links. The propagation delay of
each link is 1 µs.

PFC is enabled for CX-6 but disabled for SRNIC and IRN.
We use the traffic trace in Cache_Follower [36], where 53%
of the flows are sized between 0 - 100 KB, 18% between
100 KB - 1 MB, and the rest are larger than 1 MB. We set the
network load at 0.7 utilization, and configure other algorithm
parameters based on their papers.

We primarily focus on three metrics, i.e., average FCT, P99
tail FCT, and average slowdown [33]. The average FCT and
tail FCT describe the performance of throughput-intensive
flows, while the average slowdown shows the performance of
latency-sensitive flows.

As shown in Figure 12, the performance of SRNIC is
1.9 - 2.2x better than CX-6 across all three metrics. As the
cluster scale increases, SRNIC maintains stable performance,
while the performance gap between SRNIC and CX-6 widens.
Meanwhile, SRNIC and IRN perform similarly well as they
use the same loss-recovery mechanism (selective repeat) and
similar congestion control schemes (DCTCP vs. DCQCN).



7 Discussion

RDMA Protocol for lossy Ethernet. The RDMA protocol
was originally designed and simplified for lossless Infiniband,
and it "does not support selective packet retransmission nor
the out-of-order reception of packets", written in the Infini-
band RDMA specification [1]. As a result, the current RDMA,
by design, requires a lossless fabric to perform well.

Based on this requirement, when RDMA is introduced into
Ethernet-based data centers, Ethernet is turned from lossy
to lossless by introducing PFC, rather than re-designing an
Ethernet-native or loss-friendly RDMA protocol.

A lossless Ethernet network, however, is inherently diffi-
cult to scale and hard to maintain for high availability. It is
therefore desirable to look into the other end of the design
spectrum: revising the RDMA protocol for a lossy network.
This is the path taken by the pioneering work of IRN [33],
and SRNIC. We hope these early attempts can inspire the
re-design of a new RDMA specification for lossy network,
which supports out-of-order packet reception and selective
packet retransmission natively and efficiently, and ensures
compatibility and interoperability among different protocol
versions and RNIC vendors.
SRNIC vs. RoCEv2, iWARP and ToE. There exists a long
debate [3, 6] between RoCE and iWARP [35] (ToE [2] is
similar to iWARP in the sense of TCP offload). The former
takes a bottom-up strategy: start from a minimal, hardware-
friendly yet working transport (e.g., go-back-0, no congestion
control) and incrementally add more advanced mechanisms
(e.g., go-back-N/selective repeat, DCQCN/DCTCP) to make
RoCE work better over various networks. The latter takes a
top-down strategy: offloading the fully-compatible TCP/IP
stack (which is already proven to work well over various net-
works at scale), and gradually reduce unnecessary complexity
to improve hardware friendliness.

SRNIC takes a more balanced approach: it inherits the hard-
ware friendliness (and thus high performance) from RoCE,
and introduces only necessary features from TCP such as
selective repeat and DCTCP.

SRNIC demonstrates that high network scalability and hard-
ware friendliness can be achieved simultaneously with careful
architecture and protocol co-designs. We believe that the best
of both RoCE (hardware friendliness) and iWARP/TCP (high
network scalability) can coexist as we have shown in SRNIC.

8 Related Work

Several works [30,32,42] aim at improving RDMA’s network
scalability via bringing advanced congestion control algo-
rithms to RNICs.They control the queue length at switches
and thus improve RDMA’s performance at scale. Note that
these works are orthogonal to ours and can be integrated into
SRNIC if they are hardware-friendly.

Mellanox tries to improve RNIC’s connection scalability
via DCT [17] technology, which restricts the number of ac-
tive connections and avoids QP exhaustion via dynamically
creating and destroying QPs. However, such behavior may
cause frequent flips of connections, resulting in increased la-
tency and bandwidth waste [27]. StaR [39] improves RNIC’s
connection scalability at one side by letting the other side
save states for it. However, this strategy highly relies on the
asymmetric communication pattern, where the client with low
concurrency can share its resources with the server with high
concurrency, to improve the overall connection scalability.

Other software based transport solutions or DPDK-style
NICs, e.g., eRPC [24], FaSST [27], 1RMA [38], and Ni-
tro [37], expect NICs to provide scalable connection-less
service including packet transmission and reception, and lever-
age CPU to implement connection-related semantics. In these
solutions, it is the CPU’s responsibility to handle most of the
transport-related tasks, including packet order maintenance,
congestion control, and loss recovery. Though the scalabili-
ties of these approaches are comparable to the software trans-
port TCP, the heavy involvement of CPU results in higher
CPU overhead, higher latency, and higher jitter than that of
hardware-based transport. In contrast, SRNIC handles almost
everything in hardware but leaves only part of retransmission
in software, resulting in hardware-level performance in most
cases when there is no packet loss, and software-level loss
tolerance when packet loss happens.

9 Conclusion

This paper presents the design and implementation of SRNIC,
a scalable RDMA NIC architecture, which addresses the con-
nection scalability challenge, while achieving high network
scalability, high performance, and low CPU overhead at the
same time. Our key insight in SRNIC is to minimize RNIC’s
memory requirement, by eliminating as many on-chip data
structures as possible in a simple yet performant way. Guided
by this insight, we make a few RDMA protocol header exten-
sions and architectural innovations to achieve the design goal.
Our experiences in SRNIC tell us that existing RDMA header
formats originally designed for a lossless environment, are
not suitable for much large-scale, lossy data center networks.
SRNIC therefore is our first attempt towards more scalable
and performant, next-generation RoCE/RDMA designs.

Acknowledgments

We would like to thank our anonymous reviewers and shep-
herd Yashar Ganjali for their valuable comments. This work
is supported in part by the Key-Area Research and Develop-
ment Program of Guangdong Province (2021B0101400001),
the Hong Kong RGC TRS T41-603/20-R, GRF-16215119,
GRF-16213621, ITF ACCESS, the NSFC Grant 62062005,
and a joint HKUST-ByteDance research project.



References

[1] Infiniband architecture volume 1, general specifications,
release 1.2.1. www.infinibandta.org/specs, 2008.

[2] Information about the TCP Chimney Offload,
Receive Side Scaling, and Network Direct
Memory Access features in Windows Server
2008. https://docs.microsoft.com/en-us/
troubleshoot/windows-server/networking/
information-about-tcp-chimney-offload-rss-
netdma-feature, 2008.

[3] The pitfalls in RoCE answered with respect to
iWARP. https://www.chelsio.com/wp-content/
uploads/2011/05/RoCE-FAQ-1204121.pdf, 2011.

[4] Supplement to InfiniBand architecture specification
volume 1 release 1.2.2 annex A17: RoCEv2 (IP
routable RoCE). https://www.infinibandta.org/
specs, 2014.

[5] RDMA in Data Centers: Looking Back and Looking For-
ward. https://conferences.sigcomm.org/events/
apnet2017/slides/cx.pdf, 2017.

[6] RoCE vs. iWARP competitive analysis.
https://network.nvidia.com/sites/default/
files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf,
2017.

[7] Mellanox ConnectX-5 Product Brief. https:
//network.nvidia.com/files/doc-2020/pb-
connectx-5-en-card.pdf, 2020.

[8] Mellanox ConnectX-6 Product Brief. https:
//network.nvidia.com/sites/default/files/
doc-2020/pb-connectx-6-en-card.pdf, 2020.

[9] Microsoft Bing. https://www.bing.com/, 2020.

[10] Network Simulator 3. https://www.nsnam.org/,
2021.

[11] OFED Perftest. https://github.com/linux-rdma/
perftest/, 2021.

[12] Mellanox NEO-Host. https://
support.mellanox.com/s/productdetails/
a2v50000000N2OlAAK/mellanox-neohost, 2022.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.
In Proc. OSDI, 2016.

[14] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In Proc. SIGCOMM, 2010.

[15] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE Micro, 2003.

[16] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei
Li, Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing
Wang, Ray Kuan, et al. POLARDB meets computa-
tional storage: Efficiently support analytical workloads
in Cloud-Native relational database. In Proc. FAST,
2020.

[17] Diego Crupnicoff, Michael Kagan, Ariel Shahar, Noam
Bloch, and Hillel Chapman. Dynamically-connected
transport service, July 3 2012. US Patent 8,213,315.

[18] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When cloud storage meets
RDMA. In Proc. NSDI, 2021.

[19] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proc. SIGCOMM,
2016.

[20] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. SIGCOMM, 2015.

[21] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
In Proc. CoNEXT, 2017.

[22] IEEE. 802.1 qbb—priority-based flow control. 2008.

[23] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proc. OSDI, 2020.

[24] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In Proc. NSDI,
2019.

[25] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Proc.
SIGCOMM, 2014.

[26] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In Proc. ATC, 2016.

www.infinibandta.org/specs
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf
https://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf
https://www.infinibandta.org/ specs
https://www.infinibandta.org/ specs
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://www.bing.com/
https://www.nsnam.org/
https://github.com/linux-rdma/perftest/
https://github.com/linux-rdma/perftest/
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost


[27] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram rpcs. In Proc. OSDI,
2016.

[28] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In Proc. NSDI, 2022.

[29] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R
Narasayya. Accelerating relational databases by lever-
aging remote memory and rdma. In Proc. SIGMOD,
2016.

[30] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proc. SIGCOMM.
2019.

[31] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. Memory efficient loss recov-
ery for hardware-based transport in datacenter. In Proc.
APNet, 2017.

[32] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter.
In Proc. SIGCOMM, 2015.

[33] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for rdma. In
Proc. SIGCOMM, 2018.

[34] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In Proc. SIGCOMM. 2019.

[35] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hil-
land, and Dave Garcia. A remote direct memory access
protocol specification. Technical report, RFC 5040, Oc-
tober, 2007.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In Proc. SIGCOMM, 2015.

[37] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 2020.

[38] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,

et al. 1rma: Re-envisioning remote memory access for
multi-tenant datacenters. In Proc. SIGCOMM, 2020.

[39] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. Star: Breaking the
scalability limit for rdma. In Proc. ICNP, 2021.

[40] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
FileMR: Rethinking RDMA networking for scalable
persistent memory. In Proc. NSDI, 2020.

[41] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proc. IMC, 2017.

[42] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proc. SIGCOMM, 2015.

[43] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption
in data center networks. In Proc. SIGCOMM, 2017.


	Introduction
	Background and Motivation
	RDMA Overview
	Connection Scalability Issue

	RNIC Memory Analysis
	RDMA Conceptual Model
	Data Structures
	Common Data Structures
	Selective Repeat Specific Data Structures


	SRNIC Design
	Design Goal and Guiding Principles
	Architecture Overview
	Cache-free QP Scheduler
	SQ Scheduler
	RQ Scheduler

	Memory-free Selective Repeat
	Header Extensions
	Bitmap Onloading

	Other Design Considerations
	Design Summary

	Implementation
	Evaluation
	Connection Scalability
	Performance and CPU Overhead
	Network Scalability

	Discussion
	Related Work
	Conclusion

